EVOLUTION OF VIDEO CAPILLAROSCOPY FOR 10 YEARS IN A PATIENT WITH RAYNAUD

Maria Bibiana Leroux, Celina Lashak

Centro de Referencia en Raynaud y Colagenopatías, Rosario, Argentina

Corresponding author: Dr Maria Bibiana Leroux leroux_mb@hotmail.com

Case Report

The female patient age 48, referred raynaud for 10 years. She refers pallor and cyanosis of hands after contact with the cold. This symptom was treated with nifedipine 20 mg/d during the winter months. During this time, regular checks are made. In control this year, lung involvement is detected. Typical signs of skin sclerosis in face and hands are not observed. In the personal history relates: absence of tobacco, alcohol, drugs, radiation or occupational exposure, and hypothyroidism in treatment. History of present illness is summarized in Table I. In each of the checks, complete physical examination, hematological laboratory, antinuclear antibodies and auto-specific antibodies, radiology, and spirometry, is performed. In the immune laboratory have not detected anti-centromere, anti-topoisomerase 1 RNP or anti-Jo in successive controls. Pulmonary hypertension could correspond to systemic scleroderma or related disease (Figs 1a - c, 2a - c, 3).

Discussion

Video capilaroscopia images in this patient are progressing over ten years. During this time the patient does not meet the classic diagnostic criteria for systemic sclerosis (1980), nor does it have specific auto antibodies. However, after 10 years starting with raynaud develops pulmonary hypertension. According to the proposed criteria for early diagnosis of systemic scleroderma, this case could be considered pre or early systemic scleroderma scleroderma. Currently the definition of criteria for the diagnosis of this entity remain in debate [7-9]. In the study by video capillaroscopy, the characteristic pathological pattern scleroderma (SD) is recognized. It consists megacapilares, decrease or loss of capillaries, neo vessel formation, altered structure of the bed. You can also observe meandering, curled vessels and few branched capillaries (Tabl. II). SD pattern variants are listed in Table III.
In the first study conducted video capillaroscopy scleroderma early pattern is displayed. The density is relatively preserved, absence of avascular areas or neovascularization (Fig. 1).

In the second study, lower capillary density as above is checked. The presence of neovascularization reveals the vascular injury and repair attempt. This description corresponds to active SD pattern (Figs 1b, 1c).

In the third study, a nail fold telangiectasia is observed. These are formed by vessels which are visible to the naked eye (Fig. 2a). They are due to dilation of the post capillary venules located in the papillary and reticular dermis surface. The appearance of telangiectasias on skin is a common skin sign in systemic scleroderma and its presence is associated with pulmonary arterial hypertension. They are a marker of micro vascular disease spread [10].

In the mucosa of the lower lip has a normal appearance with the naked eye. In our case study of megacapilares and neovascularization are detected (Figs 2b, 2c).

The video capillaroscopy in this area ranks as second choice site, because of its easy access. It has a similar capillary perfusion to the fingers, so the display close to 75% of the vessels is ensured. The study of Grassi et al notes that video capillaroscopy labial mucosa in patients with systemic scleroderma characteristic exhibited as more generalized disruption of the micro vascular network [11,12].

A full nail fold is also analyzed (Fig. 3). Arrows indicate multiple avascular areas. These are very close to the bizarre vessels due to angiogenesis.

Figure 1. (A). Image video capillaroscopy by 200X in nail fold. 1 study. Very enlarged (mega capilares) capillaries. The largest is marked. Capillary density cap by 7 mm within normal limits. Vision in frosted glass. Scleroderma pattern. (B). Image of video capillaroscopy by 200X in nail fold. Obtained five years ago. One mega capilar shown. Capillary density greatly decreased. Micro hemorrhages. (C). Figure n°3: Image of video capillaroscopy by 200X in nail fold. Obtained five years ago. Neo capillary formation is observed well developed.

Figure 2. (A). Image video capillaroscopy by 200X in nail fold. Nail fold telangiectasia consist of very enlarged vessels. (B). Image of lower lip mucosa. Mega capilar. (C). Image of lower lip mucosa. Bushy capilar.

Figure 3. Video capillaroscopy image digitally, full nail fold. Multiple avascular areas, mega capilares, vessels caused by neo angiogenesis and Hemorrhages. Vision in frosted glass. Disorganization of the capillary bed. Pattern SD late.
Evolution

- **10 years ago**
 - Raynaud
 - Not detected
 - ANA negative
 - Not performed

- **8 years ago**
 - Raynaud
 - Periungual erythema
 - Fragility of skin fingertips
 - Not detected
 - ANA 1/1280 N

- **5 years ago**
 - Same as previous
 - Add hands with persistent edema
 - Arthralgia
 - ANA 1/1280 NM

- **Present day**
 - Same as previous
 - Telangiectasias periunguaires
 - Pulmonary hypertension
 - ANA 1/1280 N

Table I. Evolution patient.

- **ANA: antinuclear antibodies**
- **N: nucleolar pattern**
- **M: speckled**
- **SD: scleroderma**

Table II. Glossary capillaroscopic.

Alteration of the microcirculation

<table>
<thead>
<tr>
<th>Alteration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megacapillaries</td>
<td>Very increased in size capillaries to ten times normal. They can coexist with preserved capillaries. They are characteristic of secondary Raynaud and systemic sclerosis.</td>
</tr>
<tr>
<td>Vessels caused by neo angiogenesis</td>
<td>Increased in size, heterogeneous, bizarre, bushy capillaries</td>
</tr>
<tr>
<td>Tortuous vessels</td>
<td>Capillaries with serpentine arms like that can interbreed or turned on the long axis of the capillary.</td>
</tr>
<tr>
<td>Decreased capillary density</td>
<td>Less than 7 cap / mm. It is related to systemic scleroderma syndromes.</td>
</tr>
<tr>
<td>Avascular areas</td>
<td>These are caused by capillary loss. It can include one or more dermal papillae. A larger, more severe and are associated with decreased nutrient flow.</td>
</tr>
<tr>
<td>Disorder of the vascular bed</td>
<td>Alteration of the polarity of the capillaries.</td>
</tr>
<tr>
<td>Hemorrhages</td>
<td>Produced by injury of the capillary wall and consequent outflow of blood to the dermis. Red spots are arranged in rows extending from the capillary into the cuticle.</td>
</tr>
<tr>
<td>Exudates</td>
<td>Plasma present in the dermis can be observed in two ways: as a ground glass viewing or tenuous wave shaped figures surrounding the vessel originates.</td>
</tr>
<tr>
<td>Vision in frosted glass</td>
<td>Structures are blurred. This is due to the presence of plasma proteins the adjacent dermis.</td>
</tr>
</tbody>
</table>

Table III. SD pattern variants.

- **Early SD**
 - Mega capillaries, few hemorrhages, no apparent capillary loss, bed architecture preserved

- **Active SD**
 - Mega capillaries and frequent hemorrhages, mild capillary loss, moderate disorganization of the architecture of the bed, formation of new blood vessels in small proportion. Presence of edema. Picture can progress

- **Late SD**
 - Irregular increase size capillary, hemorrhages, severe capillary loss with extensive avascular areas, disorganization of the capillary bed, bizarre vessels. Picture stable

SD: scleroderma
In the pathogenesis of systemic sclerosis, endothelial injury and apoptosis are early in the affected skin, prior to the presence of fibrosis events. In early disease, the pro-inflammatory state and increased production of pro-angiogenic factors stimulates angiogenesis factors. The presence of hemorrhage, giant capillaries and micro vascular tortuosity changes are formed by uncontrolled angiogenic response. Subsequently, a process where actuated angiostatic factors resulting in reduction in capillary density and extensive areas of avascularity develops. Therefore the imbalance between pro-angiogenic and anti-angiogenic factors would play an active role in the formation of micro vascular alterations [13].

In Systemic scleroderma lower capillary density compared with systemic lupus erythematosus, undifferentiated connective tissue disease and normal controls was demonstrated. In these patients, increased frequency of severe avascularity, megacapilares and micro bleeding was found. The prognostic value of capillaroscopy is manifested in the relationship between the avascularity and organic disease in systemic scleroderma. The presence and severity of pulmonary hypertension in patients are specifically correlated with the reduction in capillary density per millimeter. Recently suggested that the presence of large avascularity is a predictor of mortality in patients with systemic sclerosis[14-21].

The bizarre or bushy capillaries caused by neovascularization are indicators of disease activity. The finding of avascular areas correlates with interstitial lung disease and is more common in patients receiving immunosuppressants, indicating severe disease. The dynamic nature of the process is observed in 16% of patients. The SD pattern is a good indicator of the severity and evolution of the lung [22,23].

Conclusion

Images of video capillaroscopy collaborate with the diagnosis and prognosis of patients in the spectrum of systemic scleroderma.

REFERENCES