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INTRODUCTION

Many ancient cultures place a strong emphasis on 
lifestyle behaviors as both an etiology and therapy in 
disease, whereas modern medicine focuses on scientific 
advancements often overlooking nonpharmacological 
therapy. Despite recent therapeutic advancements, 
the field of dermatology includes a myriad of 
heterogeneous, complex inflammatory diseases with 
which patients experience considerable morbidity and 
significant unmet need. The role of lifestyle behaviors 
in inflammatory processes and disease is not well-
defined, and their evaluation, adjustment, or alteration 
is seldom recommended in dermatology. This review 
focuses on the function of lifestyle behaviors, such as 
diet, sleep, and exercise in the context of inflammation 
and inflammatory dermatoses.

PART I. DIET

Inflammatory skin conditions are the most common 
problem seen in dermatology practice [1]. Numerous 

studies have demonstrated a positive association 
between poor diet and worsening of inflammatory skin 
diseases, such as psoriasis, hidradenitis suppurativa 
(HS), and atopic dermatitis [BT1] [2-5]. More 
specifically, foods with a high glycemic index, 
advanced glycation end-products (AGEs), and omega-6 
polyunsaturated fatty acids (PUFAs) are associated with 
obesity and systemic inflammation [6-9]. High glycemic 
index foods significantly increase blood glucose levels, 
stimulating insulin production [6]. Insulin promotes 
glucose uptake by adipocytes, promoting fat storage, 
leading to obesity and increased visceral adiposity. 
Visceral adipose tissue has a higher density of cells 
and is more biologically active than other forms 
of fat, producing inflammatory cytokines, such as 
leptin, resistin, tumor necrosis factor-alpha (TNF‐α), 
interleukin (IL)-6 and monocyte chemoattractant 
protein-1 [6,10]. Additionally, increased visceral 
fat is associated with reduced levels of adiponectin 
and increased insulin resistance mediated through 
c-Jun N-terminal kinases (JNKs) phosphorylation in 
adipocytes [11-15]. These metabolic abnormalities 
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lead to dysregulated lipolysis in the liver resulting in 
excessive delivery of fatty acids to hepatocytes [14,15]. 
With time, development of non- alcoholic fatty liver 
disease (NAFLD) and subsequent non-alcoholic 
steatohepatitis (NASH) occurs. These conditions 
are positively associated with increased serum 
concentrations of IL‐1β, IL-6, TNF‐α, c-reactive 
protein (CRP), and ICAM-1 [16]. Moreover, AGEs, 
formed by non-enzymatic glycation of macromolecules, 
bind to receptors for advanced glycation end products 
(RAGEs), increasing the transcription of IL-6, TNF‐α, 
and CRP [5,8]. Lastly, PUFAs are metabolized into pro-
inflammatory eicosanoids, such as prostaglandin E2 
and leukotriene B4 [5,6,9,17]. Taken together, obesity, 
NAFLD, NASH, and specific dietary components 
promote a pro-inflammatory environment that is 
thought to exacerbate inflammatory skin disease. It 
should also be noted that insulin resistance leads to 
worsening of hyperglycemia and the development of 
type II diabetes mellitus, contributing to the vicious 
circle of obesity-related chronic inflammation [18,19].

In psoriasis, obesity and cardiovascular disease (CVD) 
are related to incidence, severity, and progression of 
the condition. The pathogenesis of psoriasis is driven 
by aberrant TNF-α/IL-23/IL-17 axis signaling, leading 
to hyperproliferation and increased differentiation of 
epidermal keratinocytes [20]. Specifically, TNF‐α acts 
on dendritic cells to increase the transcription of IL-23, 
thereby stimulating T-helper 17 cells to release IL-17A. 
Through increased TNF‐α production, obesity promotes 
T-helper 17 cell expansion, which also leads to increased 
IL-17A production, participating in the pathogenesis 
of psoriasis. Similarly, the link between psoriasis and 
CVD is thought to be due to shared pro-inflammatory 
pathways between the two conditions [21,22]. Akin to 
psoriasis, the pathogenesis of hidradenitis suppurativa 
(HS) involves hyperactivation of the TNF-α/IL-23/
IL-17 axis, preceded by follicular occlusion of the 
follicular pilosebaceous unit [23]. The prevalence 
of obesity among HS patients was roughly 2.5 times 
that of non-HS patients [24]. The number of patients 
reporting HS symptoms after a 15% weight reduction 
decreased by 35%, with a statistically significant 
reduction in the number of body sites involved [25]. 
Interestingly, the prevalence of obesity and metabolic 
syndrome is thought to be higher in patients with HS 
relative to psoriasis with an OR of approximately 6.0 
compared to 2.0 [26]. In addition to elevated TNF‐α 
and IL-6 production, metabolic syndrome-induced 
androgen overproduction of sebum and overgrowth 

of the intra-ductal keratinocytes is thought to be the 
backbone of obesity-mediated HS exacerbation. In 
atopic dermatitis (AD), dietary factors such as cow’s 
milk, egg, soybean, and wheat gluten contribute to 
symptom progression [27]. In a study by Breuer et al., 
the mentioned food allergens were administered to 106 
pediatric patients with AD [28]. The food challenge 
triggered immediate onset exanthematous reactions 
in 46% of participants. Additionally, a cross-sectional 
study involving approximately 18,000 patients with or 
without AD identified a significant association between 
processed food, meat, and instant noodle consumption 
in those with a diagnosis [29]. Food allergens can trigger 
acute immunoglobulin E- mediated hypersensitivity 
reactions or food allergy related T-cell late eczematous 
reactions [27]. As such, patch testing and dietary 
modification via a predominantly plant based anti-
inflammatory diet is recommended for those with 
AD [27-30]. The impact of poor diet and obesity on 
inflammatory skin disease is an important topic of 
discussion, as it is predicted 50% of adults will have 
obesity by 2030 [31]. As such, it is logical to assume 
an increase in the prevalence of inflammatory skin 
pathologies with time. Additional studies involving 
dietary intervention on disease remission are warranted.

PART II. SLEEP

The circadian rhythm is an essential internal clock 
synchronized with the environmental light-dark cycle 
present in all mammals. In humans, the circadian rhythm 
is under the control of the suprachiasmatic nucleus and 
retinohypothalamic tract, and it involves a molecular 
transcription- translation feedback loop present in 
most tissues and cell types [32,33]. Skin, an important 
immunological organ, exhibits a diurnal expression of 
various proteins within its layers, where the light-dark 
cycle- related alterations in gene expression are most 
prominent in the epidermis [34,35]. The immune 
function of the skin is regulated by circadian rhythms, 
and its proper function is important for suppression 
of autoimmune diseases [36,37]. Disturbances in 
circadian rhythms associated with shift work have 
been hypothesized to contribute to the development 
of psoriasis and other autoimmune conditions [33]. 
The possible contributing factors include decreased 
levels of melatonin and vitamin D, which are known for 
their anti-inflammatory effects [31-33]. Additionally, 
the light-dark cycle controls the function of γδ+ T 
cells and Langerhans cells within the epidermis, which 
are important for the immune functions of the skin. 
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The γδ+ T cells are controlled via a direct activation 
of the Interleukin-23 (IL-23) promoter by circadian 
rhythm CLOCK protein within the γδ+ T cell 
subset [38]. Similarly, macrophages and mast cells of 
the dermis layer are directly regulated by the circadian 
clock and mediate phagocytosis and cutaneous 
anaphylactic reactions, respectively [39]. Other diurnal 
immunologic skin patterns include circadian cycle-
dependent T cell recruitment, which is implicated in 
nocturnal exaggeration of atopic dermatitis and overall 
fluctuations in chemoattractant levels throughout the 
skin layers [36,40].

Circadian cycle disturbances have been repeatedly 
linked to chronic inflammatory diseases [36,41-46]. 
Insufficient sleep is known to be associated with chronic 
inflammatory states seen in diabetes, obesity, and 
cardiovascular diseases, which are often comorbid with 
dermatologic autoimmune conditions [46]. Severity 
of several autoimmune skin conditions including 
psoriasis is inversely correlated with the amount of 
sleep and sleep difficulty [47,48]. Sleeping disturbances 
associated with disease state or pharmacological side 
effects negatively impact circadian cycle [49,50]. In 
psoriasis and atopic dermatitis, nocturnal pruritus 
disturbs sleep and further exacerbates severity of the 
autoimmune conditions, creating a positive feedback 
loop [50,51].

The effects of sleep on the immune system include 
a bidirectional regulation between the stages of the 
sleep cycle and levels of pro-inflammatory cytokines. 
Sufficient nighttime sleep is necessary for proper 
bimodal daily release of IL-6, which plays an important 
role in acute inflammation. IL-6 is a cytokine with 
context-dependent pro- and anti-inflammatory 
properties, and is implicated in cell differentiation, 
oncogenesis, and pathogenesis of inflammatory skin 
conditions including psoriasis, vitiligo, and atopic 
dermatitis [52-54]. Sleep deprivation is correlated with 
disproportional increase in daytime IL-6 accompanied 
by a decline in nocturnal IL-6 levels, as well as increased 
NF-κB activation [55,56]. Alterations of IL-6 and 
NF-κB functioning further support the role of sleep in 
the development of inflammatory states. Additionally, 
a variety of pro-inflammatory cytokines possess sleep-
modifying properties [57,58]. For instance, elevated 
IL-1 and TNF-alpha levels have been associated with 
a reduction in rapid eye movement (REM) sleep 
and an increase in total non-REM [59]. Interestingly, 
sleep deprivation additionally skews the Th1/Th2 
phenotypic ratio towards the Th2 dominance [60]. 

Increased prevalence of the Th2 phenotype, compared 
to Th1, is implicated in development of dermatologic 
conditions such as atopic dermatitis, highlighting the 
possible importance of sleep in autoimmune states. 
Further investigation is needed to elucidate the 
effects of molecular players of circadian cycles on the 
pathogenesis of autoimmune skin conditions.

PART III. EXERCISE

Both aerobic exercise and strength training produce a 
decrease in inflammation. Interestingly, exercise’s true 
anti-inflammatory effects arise gradually, whereas short-
term changes with exercise induce pro-inflammatory 
processes. The initial response is mediated by an 
increase in the pro-inflammatory cytokines TNF-α, 
IL-1β, and IL-6, both during and immediately following 
exercise [61]. However, the transient inflammatory 
state is counteracted by release of anti-inflammatory 
hormones cortisol and adrenaline [62,63]. With 
frequent exercise, the anti-inflammatory effects 
predominate in a longer-term response.

Though the exact mechanism is unknown, several 
hypothesized pathways have been proposed. 
One proposed mechanism is that exercise’s anti-
inflammatory effects are due to a significant decrease in 
pro-inflammatory cytokines C-reactive protein (CRP), 
IL-6, and TNF [62]. Others suggest that exercise 
activates AMP-activated protein kinase (AMPK), 
thus increasing fatty acid oxidation and glucose 
metabolism [64]. Javaid, et al. suggest that beneficial 
effects of exercise may be explained by inhibition of 
NLRP3 inflammasome activation by the myokine 
Meteorin-like (METRNL) which is crucial for the onset 
of inflammation [65].

In support of exercise’s downregulation of TNF-α, a 
clinical trial investigating exercise’s pro-inflammatory 
effects showed that in participants infused with 
Escherichia coli, resting participants to have a 
two- to threefold increase in TNF-α compared to the 
participants who performed a cycling exercise earlier 
that day [66,67]. Furthermore, though the exact 
pathway is unknown, IL-6 appears to play a significant 
role [62,63,67-81]. IL-6 is commonly classified as 
a proinflammatory cytokine, much like TNF-α, 
however studies suggest it may have anti-inflammatory 
properties as well, due to its ability, via negative 
feedback, to decrease the body’s levels of TNF-α and 
other proinflammatory cytokines [70,72,76,80]. Levels 
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of IL-6 may be increased up to 100-fold in long-term 
exercise [63,74-77]. In fact, participants who did not 
exercise but were given recombinant human IL-6 
(rhIL-6), displayed a similar decrease in levels of 
TNF-α, as participants who rode a bike for three hours 
that same day [66]. As expected, the control group, who 
neither engaged in exercise nor received rhIL-6, showed 
elevated levels of TNF-α. Moreover, the increase of 
IL-6 further combats inflammation by increasing anti-
inflammatory cytokines IL1ra and IL10. In turn, IL-10 
down regulates pro-inflammatory cytokines TNF-a, IL-
1b, IL-6, IL-1α, IL-8, and macrophage inflammatory 
protein-1α (MIP-1α) [63,74,76].

Further, varying exercise intensity may display different 
anti-inflammatory profiles in healthy individuals. For 
instance, Paoluccia et al. found that moderate intensity 
is optimal for reducing inflammation, while high-
intensity training may be harmful due to perception of 
stress as unrecoverable [75]. In contrast, Schauer et al 
showed comparable anti-inflammatory effects among 
different intensity levels in healthy adults. However, 
breast cancer patients undergoing chemotherapy had 
decreased levels of pro-inflammatory CRP during high-
intensity exercise compared to during low-to-moderate 
intensity exercise [79].

The few studies investigating exercise in skin diseases are 
limited to psoriasis and dermatomyositis (DM), where 
increased levels of TNF-alpha play a key role in disease 
progression. In psoriasis, keratinocytes proliferate in 
response to TNF-α, IL-17, and IFN-γ. Proliferating 
keratinocytes participate in a positive feedback loop, 
further secreting TNF-α and inducing neighboring 
cell proliferation [82]. Similarly, upregulation and 
promoter polymorphisms of TNF-alpha are associated 
with pathogenesis of DM [83,84]. Hence, beneficial 
effects of exercise seen in both psoriasis and DM may 
be mediated by reduction of TNF-alpha levels. Exercise 
is associated with reduced disease activity and improved 
functioning in patients with psoriasis [85]. Likewise, 
moderate intensity aerobic exercise is associated with 
improved muscle function, decreased disease activity, 
and higher quality of life among patients with DM [86].

CONCLUSION

This review highlights the major link between lifestyle 
factors and inflammatory skin disease. While there is 
no evidence that behavior modification should replace 
standard of care therapy, patients with inflammatory 

skin disorders may benefit from supplementing 
therapeutic regimens with non-pharmacological 
therapy in the form of altering diet, sleep, and exercise 
habits. Many mediators involved in pathogenesis of 
inflammatory disorders are those that are also shown 
to be downregulated during engagement in health 
behaviors. Of equal importance to incorporation into 
treatment regimens is the recognition of lifestyle 
behaviors as risk factors and potential screening 
tools for inflammatory disorders. Thus, thorough 
history-taking and a combination of traditional therapy 
with adjustment of practice in diet, sleep, and exercise 
will optimize holistic assessment and patient outcomes.
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